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Viscous flow over a cone at moderate incidence. 
Part 2. Supersonic boundary layer 

By T. C. LIN AND S. G. R U B I N  
Polytechnic Institute of Brooklyn, Preston R. Bassett Research 

Laboratory, Farmingdale, New York 

(Received 18 September 1972 and in revised form 15 March 1973) 

A finite-difference method recently developed to study three-dimensional viscous 
flow is applied here to the supersonic boundary layer on a sharp cone at moderate 
angles of incidence (a/S < 2, angle of attack a, cone half-angle 8). The present 
analysis differs from previous investigations of this region in that (i) boundary- 
layer similarity is not assumed, (ii) the system of governing equations incor- 
porates lateral diffusion and centrifugal force effects, and (iii) an improved 
numerical scheme for three-dimensional viscous flows of the type considered 
here is used. Solutions are shown to be non-similar at the separation streamline 
with local shear-layer formation. Detailed flow structure, including surface heat 
transfer, boundary-layer profiles and thickness, and the formation of swirling 
pairwise symmetric vortices, associated with cross-flow separation, are obtained. 
Good agreement is obtained between the present theoretical results and the 
existing experimental data. 

1. Introduction 
The high-speed flow over a sharp cone at  incidence represents a three- 

dimensional fluid dynamic problem encompassing a wide variety of phenomena 
that have recently been observed experimentally, but for which analytic treat- 
ment is to  date incomplete. With the availability of the latest generation of 
high-speed computers, inviscid calculations by Moretti (1967) and Jones (1968), 
among others, have led to significant improvement of previous approximate 
theories. However, if experimentally observed behaviour is to be confirmed 
analytically, the influence of viscosity on the flow field must be evaluated. 

The flow field on a cone exhibits shock-boundary-layer merging, near the tip, 
until the strong interaction region where a coupled but distinct inner boundary 
layer and outer shock wave develop. Analysis in these regions is quite complex, 
and at  the present the only available solutions are the merged or single-layer 
calculations of the authors presented in part 1 of this analysis (Lin & Rubin 1972). 
It has been shown that, even at  moderate angles of incidence (ale 6 Z ) ,  (i) conical 
flow pressure is recovered very close to the tip on the windward surface, but only 
further downstream on the leeward plane; (ii) the heat transfer adjusts to its 
asymptotic values less rapidly ; (iii) the leeward plane inviscid vortical singularity 
diffuses into a thin entropy layer, and a ‘lift-off’ effect occurs for a/8 > 1; 
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(iv) cross-flow separation does not originate close to  the cone tip. This result 
confirms the experimental observations of Stetson (1972). 

Further downstream the coupling between the boundary layer and inviscid 
flow is diminished, and a three-dimensional boundary-layer problem must be 
formulated. The outer pressure distribution can be obtained from either inviscid 
analysis (e.g. Jones 1968), single-layer analysis (Lin & Rubin 1972) or experiment 
(e.g. Tracy 1963). 

Moore (1953) was the first to  examine the boundary-layer behaviour along the 
symmetry planes on a slender cone a t  incidence. He assumed parabolic similarity 
of the boundary layer and a conical inviscid flow. Although results for the wind- 
ward plane were acceptable, Moore was able to obtain leeward plane solutions 
only for very small angles of incidence. He reasoned that a t  large incidence the 
leeside boundary layer must depend on the history of the fluid during its passage 
around the cone. Since the symmetry plane equations are independent of the 
out-of-plane flow, no such influence was considered. Other symmetry plane 
analyses have also resulted in the non-uniqueness or non-existence of leeward, 
and sometimes even windward, pIane solutions (Murdock 1971; Roux 1971; 
Cheng 1961; Trella & Libby 1965). 

Cooke (1966), McGowan & Davis (1970), Boericke (1971) and Roux (1971) 
solved the simplified quasi-two-dimensional similarity boundary-layer equations 
by integrating around the cone, starting at the windward surface, where the 
entire flow must be predetermined. However, they were still unable to  obtain 
solutions a t  the lee surface except for very small angles of yaw. Significantly, 
this integration in the azimuthal ($) direction represents an initial-value problem 
of a first-order (in #) differential equation, so that one can never be sure that 
the leeward plane symmetry conditions, and in particular the approach to  zero 
cross-flow, will be satisfied. McGowan & Davis (1970) formulated a, general pro- 
cedure for three-dimensional boundary layers, patterned on the numerical 
method developed by Krause, Hirschel & Bothmann (1969). However, cross-flow 
diffusion was not considered, and the numerical method is only marginally 
stable for negative cross-flows. Also, for spinning and non-circular cones, an 
initial plane solution on the windward surface is not readily obtainable, so that 
these methods becomes less desirable (Dwyer 1971). 

Moreover, it was shown by Boericke (197 1) that the simplified equations at 
the leeward side of the cone exhibit behaviour typical of either a node or a saddle 
point, and are therefore extremely difficult to treat by numerical means. I n  
addition, for 0118 > 1, the cross-flow may exceed sonic speeds near qi = &i-, and 
then must decelerate through a sonic point back to zero velocity as the leeside of 
the coneisapproached. Thisresults in a mixed type of partial differential equation, 
and adds yet another difficulty. Finally, when secondary-flow separation occurs 
(ale > O-S), reverse cross-flow velocities are encountered, and the azimuthal 
marching technique becomes unstable. 

The aforementioned analyses all assume a constant pressure boundary layer, 
conical outer flow conditions, similarity for the boundary layer, and negligible 
crosswise diffusion. At the leeward plane, for small angle of incidence, and off 
the leeward plane for large yaw angles, these approximations become suspect. 
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Circular cone 4 = 0 (Windward) 

J+ 1, K f  1) 

J -  1, K-l- I )  

FIGURE 1. Flow geometry and numerical grid. 

In  the present paper, the laminar flow over a slender cone a t  moderate angles 
of incidence (i.e. cc/8 6 2.0) is studied analytically with a numerical finite- 
difference technique recently developed by the authors for general three co- 
ordinate viscous flow problems. We intend to develop an efficient numerical 
scheme t o  determine all three-dimensional flow properties on a cone at incidence, 
including the fist analytic determination of secondary-flow separation, the 
formation or roll-up of spiral vortices, and the flow structure at the location of 
the separation streamlines (e.g. the leeward plane at  small incidence). 

The primary differences between this approach and the above analyses are 
as follows. (i) An initial-value problem is formulated in the streamwise direction 
only, and parabolic boundary-layer similarity is not postulated. If a similar 
solution does exist, it will be obtained asymptotically. (ii) A starting streamwise 
plane solution for the cross-flow integration is no longer necessary. (iii) The 
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governing equations presented here are modified so as to include the effects of 
centrifugal forces due to large cross-flow velocities, as well as lateral diffusion 
near cross-flow separation planes. The validity of the usual three-dimensional 
boundary-layer equations is carefully and critically examined. (iv) The finite- 
difference scheme applied here was developed by the authors specifically for 
three-dimensional viscous flow studies. 

In $ 2 the governing equations are presented. The boundary conditions, initial 
profiles, and numerical finite-difference method are discussed in $0 3, 4 and 5, 
respectively. Details of the numerical solutions for the flow structure, including 
comparisons with available experimental data, the effects of grid size, surface 
temperature and Mach number are discussed in 5 6. Finally, there is in $ 7  a sum- 
mary of the most significant results and conclusions. 

2. The governing equations 
A body-fixed co-ordinate frame (5, J ,  4) with velocities U, V ,  iij, respectively, is 

defined in figure 1, where T is the cylindrical co-ordinate measured from axis of 
symmetry, i.e. 

r = Zsin$+ycosO. 

The following non-dimensionalization and change of variable is prescribed: 

u = U / n w ,  w = E[Rex]texp{-Pq5}/Um, w = G/e,sina, 

P = d%, T = F / T m 7  P = jjipm7 

q5 = ,u = ,E/,Em, Re = pmuwL/,Em. 

a is the angle of attack, P is a prescribed function of a/@; since no characteristic 
length is present for this analysis, L is chosen as I in. or I ft, depending on the 
Reynolds number of the flow being considered. 

The three-dimensional boundary-layer equations in the transformed plane, 
modified to include centrifugal force and cross-flow diffusion effects, become: 

- -  

x = Z/L, r = T/L, 7 = ?j Re+ x-4 exp { -Bq5}/L, 

continuity, 
X 

X ( P ) Z  -; (PU), + ( P V ) ,  + ;[sin a(pw)+ - Pr sin a(Pw), 

+pusin8+pw(Rex)-~exp{Pq5}cos8] = 0; 
x momentum, 

pw sin a 
xpuu= - 

- -pw2 sin2 a sin 8 + - p z  - exp { - 2Pq5) (p, u, + pu,,) 

puu, i- pvu, + 7 - PruJ 2 
X X 

r M: Y 

(2.1 a )  

(2.1b) 

(2.1 c) 
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q5 momentum, 
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pw sin a 
puxw, -p‘u”/lw, + pvw, -k - r X b q 5  - PV,l 2 

energy, 
pw sin ax 

1TT$ -PrT,I PUXT, -- PU qq +PvT, + 
2 r 

17 v exp {@$} v cos 0 Re-& x d  
+ p ( y -  1)x ux---uzc,+~+ [ 2 x  x r 

Here, if E = 0, the familiar three-dimensional boundary-layer equations with 
transverse curvature effects are recovered; when E = 1, lateral diffusion as 
typified by~@~,etc. ,aswellas centrifugal forceeffects areretainedin thegoverning 
equations. 

Our basic system (2.1) is deduced from the Navier-Stokes equations under 
the fundamental assumption that viscous regions will be confined to a thin layer 
near the wall, so that the Reynolds number Re = j7mgmL/p, >> 1. As is usually 
the case in boundary-layer analysis, shreamwise diffusion is a higher-order effect, 
so that terms such as iiz2 and Fez have been neglected. However, crosswise 
diffusion has not been neglected ( E  = 1), and, as will be shown later, these terms 
are significant near the separation streamline, i.e. at the lee side for small in- 
cidence and off the leeward plane for moderate angles of yaw. Without the cross- 
flow diffusion terms (e.g. u4#, w+$) a singularity would be encountered at the 
separation line. Here we implicitly assume that the cone is infinitely long so that 
no upstream influence from tbe cone-base region is possible. The set of equations 
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(2.1) is not restricted to small or subsonic cross-flow, and parabolic similarity 
for the boundary layer has not been prescribed. 

3. The boundary conditions 
The boundary conditions at  the cone surface are, with no slip, 

y = 0, u = w = w = 0, T = T, (isothermal wall), Tw = 0 (adiabatic wall), (3.1) 

and at  the symmetry plane, @ = 0 or n-, y > 0,  w is antisymmetric with 

U+ = T+ = p+ = p?rp = 0. 

The conditions at the outer edge of the boundary layer can generally be 
obtained from solutions of the inviscid Euler equations. The inviscid conical 
flow calculations of Moretti (1967), Jones (1968), or results obtained from the 
method of characteristics, are all in reasonable agreement for a/S 6 1.0. For 
larger yaw angles these inviscid analyses are no longer adequate, as localviscous- 
inviscid interaction, disappearance of the leeward plane outer shock wave or 
movement of the lee side vortical singularities introduce additional complica- 
tions. In  lieu of these solutions the existing experimental data of, e.g., Tracy 
(1963), Rainbird (1968) and Yahalom (1971), or the strong interaction solutionst 
of Lin & Rubin (1972), are available to test the theoretical model and numerical 
formulation. The only required input data for the present calculation is the 
surface pressure and this can be obtained from any of the sources described 
above. For most of the results to be discussed later, experimental pressure values 
were prescribed. The pressure distribution is suitably curve fitted to assure the 
smoothness of the profile, i.e. 

rn 

p&im = a,cosn$. (3.2) 
n = O  

The number of terms chosen in the Fourier expansion (3.2) is dependent on the 
specific angle of attack (e.g. m = 5, at 01 = 4" and m = 10 for a = 20"). When 
additional terms are included in the series (3 .2) ,  the effects on the numerical 
solutions are minimal. 

With the conical flow assumption for the outer inviscid region, the Euler 
equations at  the cone surface become 

u+ = w sin 8 sin a, 
1 

wwAsin2cz+uwsinccsin6' = -= 

In  view of the split symmetry conditions, w = 0 a t  q5 = 0 and n-, an eigenvalue 
problem for the unknown velocity u,(O) at the windward plane results. For the 

t The surface pressure achieves asymptotic conical conditions close to the cone tip. 
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smaller angles of yaw, a < lo", a trial-and-error implicit shooting method, with 
integration from the windward to the leeward side of the cone, is combined with 
a Newton-Raphson iteration procedure in order to determine the value of u,(O) 
that leads to a zero cross-flow velocity at the leeward plane. This unidirectional 
shooting, from q5 = 0 to rr, is not applicable for larger angles of attack, as the 
mathematical nature of the leeward plane singular point changes character. This 
can be seen by solving for we from (3.3), whereby 

usin8 sin8 
2 sin a - 2 sin a 

W I  = --- + -JD, 

and (3.4) 

Therefore, we find that, at  the symmetry planes where w = pe = 0, the differential 
equation (3.4) exhibits (i) a stable node for D < 0, p4$ > 0 ;  (ii) a stable focus for 
D < 0, p I I  > 0 ;  and (iii) a saddle point for D > 0, p4+ < 0 (Hales 1969). With 
a, free-stream Mach number N, = 8, a cone half-angle 8 = lo", and the inviscid 
pressure results of Jones (1968), we find from (3.4) that the windward plane 
exhibits a saddle point behaviour for all angles of incidence. At the leeward 
generator, case (i) applies for a 6 2"; case (ii) for 4" G a < 8"; and case (iii) for 
a > 10". 

With the unidirectional shooting method and cc < lo", the iteration procedure 
for the eigenvalue u,(O) converges rapidly. For a 2 lo", a saddle point is en- 
countered at  the leeward plane and a process of double shooting is required. 
Solutions from the windward and leeward planes are matched at some prescribed 
intermediate points until the velocities differed by less than a set tolerance, 
usually (see figure 2). The exact matching position is not known a priori 
but results from the iteration procedure. These techniques proved to be ex- 
tremely satisfactory for obtaining the outer inviscid values a t  all angles of 
incidence a < 20°, 8, = 10". For a/B < 1.1, Jones (1968) has presented detailed 
solutions which are compared with the present values on figure 2 ( b )  and table I .  
The results generally agree to within 1 yo for a = 7" and 10 yo for a = 11'. I n  
view of the curve fitting procedure adopted here for the pressure and Jones's 
extrapolation procedure for the surface values, which is somewhat inaccurate 
for the larger angle, the agreement is quite reasonable. For a > II", Jones was 
not able to obtain solutions, and even for a = 11" his surface distribution is not 
very smooth (figure 2 ( b ) ) .  

The vorticity at the outer edge of the boundary layer, in particular at the 
leeward plane, is assumed to vanish so that any vorticity interaction would be 
a higher-order effect. Lin & Rubin (1972) have shown that in the tip region the 
vorticity singularity diffuses within the boundary layer into a vortical region 
and also that the concept of 'lift-off' of the entropy layer is possible in a viscous 
flow (see also Yahalom 1971). In  this case, one would not expect a significant 
vorticity interaction near the edge of the boundary layer. I f  the inviscid sin- 
gularity remains outside, but near the edge of the boundary layer, vorticity 
effects might be important. These have not been considered here. 
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9" 
FIGURE 2 .  ( a )  Inviscid cross-flow inclination. M, = 7.95,B = lo", a = 12". 0, leeward plane 
to windward plane; - , windward plane to leeward plane. ( b )  Inviscid streamline. 
M, = 10-0,B = loo, a = 11" (above), 7" (below). x , inviscid surface conditions (Jones 1968); 
--, presenttheory. 

< 

tan-l(E/G) 0 22.5 45 67.5 90 112.5 135 157.5 180 

(a )  a = 70, M ,  = 10,o = lo0 
Jones 0 1.732 3.284 4.583 5.517 5.851 5.384 3.502 0 

Present method 0 1.726 3.291 4 6 0 1  5.533 5.870 5.390 3.471 0.000 

(b)  = 110, M, = 10, e = 100 

Jones 0 2.667 5.333 7.017 9.217 9-300 10.300 7.239 0 

Present method 0 2-830 5.701 7.889 9.650 10.619 11.090 8.050 0.000 

TABLE 1. Inviscid streamline inclination (degrees) 
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In  certain experiments the appearance of weak embedded shocks has been 
reported for the largest incidence considered here a16 z 2 (e.g. Tracy 1963; 
Yahalom 1971), although other experimental data (e.g. Stetson 1972) have not 
confirmed such formation. If an embedded shock does form when a10 < 2, it is 
extremely weak, and in fact cannot be detected by vapour screen techniques or 
with a schlieren optical system (Yahalom 1971). Surface pressure measurements 
are also inconclusive. For larger incidence 8 = 5", a = 24" or a18 > 4 vapour 
screen, and schlieren photographs obtained by Feldhun (1971) showed the 
appearance of stronger internal shocks. At the angles of incidence considered 
here, such effects will be minimal a t  most, and therefore have not been considered 
explicitly. Of course, for the larger angles of incidence considered here, the 
experimental pressure distribution is applied so that the effect of even a weak 
internal shock is considered implicitly. 

4. Initial conditions 
The flow profiles as obtained from the merged and strong interaction results of 

Lin & Rubin (1972) represent one possible mechanism for generating initial 
profiles for the present cone boundary-layer calculations. However, several 
alternative methods for representing the initial conditions have been tested and 
will now be described. 

(i) Seq-generated projiles. At the initial station, the body geometry as well 
as the boundary conditions at the edge of the boundary layer and at  the wall 
are known. A set of profiles for u, wand T can be assumed that satisfies all the 
necessary boundary conditions. Improved values are then calculated by marching 
one step in the streamwise direction with the finite-difference scheme of 5 5. The 
surface and outer boundary values are held fixed. New initial profiles are then 
assigned to the initial station by taking the average of the previously assumed 
and newly calculated values. By repeating this process, the solutions quickly 
converge until the difference between two consecutive iterations is less than 
a prescribed tolerance which is set equal to Ax. This technique for generating 
the initial conditions relies on the same computer program as for the subsequent 
marching process and is simple to apply. 

(ii) Experimental data. If available. 
(iii) Arbitrary initialprofiles. Since the governing equations (2.1) are parabolic, 

the error associated with incorrect initial values will rapidly decay. For the 
present, three-dimensional boundary-layer calculations, a linear distribution for 
the streamwise velocity u, a Poiseuille flow distribution for the cross-flow w 
and the use of a Crocco temperature-velocity relationship were tested. It should 
be noted that the initial profiles for v are not specified, but rather calculated from 
the known values of u, T and w. Here an iterative scheme, first suggested by 
Krause (1967), is employed,? in order that v be determined to any prescribed 
order of accuracy. 

t Here v is evaluated at  the mid-station I + 4 (fipre 1) in lieu of Krause's averaged I 
and I + 1 values. 
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At a distance of 0.3L from the starting location, the heat transfer, as obtained 
from the various initial values, are almost indistinguishable (Lin & Rubin 1972). 

5. Numerical finite-difference scheme 
The numerical finite-difference scheme used here is a predictor and corrector 

semi-implicit method. The details of therepresentation of the difference quotients, 
inversion of matrices, the stability and consistency analysis of the predictor- 
corrector method and further discussion concerning the effects of nonlinearity 
and iteration are presented in Rubin & Lin (1971, 1972) and Rubin (1972). 

6. Results 
In  9 6 a detailed study of the surface conditions and boundary-layer profiles 

011 cones at  angles of incidence up to twice the cone half-angle is presented. 
Complete solutions, from the windward to the leeward plane, including cross-flow 
separation and vortex formation are discussed. Many of the results presented here- 
in represent the first analytic determination of these complex three-dimensional 
phenomena. 

The majority of the numerical results presented here are obtained at con- 
ditions corresponding to the experiments of Tracy (1963) and George (1969): 
JIm = 7-95; Rein-1 = 1-1 x105;  Po = 1360"R; TWITo = 0.41; 19 = 10"; y = 1.4. In  
addition, the effects of Mach number and surface temperature are also discussed. 
Unless stated otherwise the calculations always include the effect of lateral 
diffusion (i.e. e = 1 in (2.1)). The Sutherland viscosity law is applied throughout 
the computation. Typical run times are from 10 to 40 minutes on a, CDC 6600 
computer, depending on the extent of the grid, the angle of incidence and the 
fina 1 streamwise distance. 

6.1. Flow patterns 

The general flow structure for a/B 6 2.0 as obtained from the present caslcula- 
tions will now be discussed. I n  particular, results relating to cross-flow separation, 
vortex formation and surface or limiting streamline patterns within the entire 
separation region, which to the authors' knowledge have been obtained analyti- 
cally for the first time, are presented. The influence of these phenomena on surface 
heat transfer, boundary-layer thickness and flow properties in general are 
briefly outlined, with a more complete analysis presented in $9 6.2-6.4. 

With modern oil-film techniques surface streamline traces can be readily de- 
tected. For cone flows these provide a good method for describing the overall 
flow behaviour. The direction of a local limiting streamline is defined by 

Figure 3 depicts the 0, distribution from the windward to tihe leeward plane 
€or different incidence angles. Also shown are the experimental traces of McDevitt 

7 Most of the calculations are based on the experimental pressure distribution. 
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FIGURE 3. Surface streamlineinclination. M, = 7.95,O = 10"; TJT, = 0.41. (a)Experimental 
data; oilfilm (McDevitt &Mellenthin 1969): A, a = 2"; U , 4 O ;  0, 8"; 0, 10". - , present 
theory; Re = 1.04 x lO5h-l;  5 = 3.0in. ( b )  a = 20' (above), 12" (below). R e x  = 2.1 x lo5. 

90" Cross-flow 

FIGURE 4. Surface streamline patterns. Mm = 7.95, 0 = lo", cc = 12", TWITo = 041.  
-, surface; - --, inviscid streamline projections. 
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U0 

FIGURE 5. Cross-flow separation point. M, w 4, ..., 10, 6 = 10". Experimental data: -, 
Avduevskii & Medvedev (1966); A, Tracy (1963); 0, McDevitt & Mellenthin (1969); 
V,  George (1969); - * -  , Marcillat (1970). I, present theory. 

& Mellenthin (1969). As the streamwise variation in 0, is small in the wea,k 
interaction region, we will assume that 6, = 6,(4). By integrating the surface 
streamline equation 

- Ow($) at ?j = 0, 
r dq5 
dx: 
- -  

the shapes of the limiting streamlines have been determined. Some results are 
depicted on figure 4. Also shown are the surface projections of the outer inviscid 
streamlines. One feature of cross-flow separation is the appearance of an in- 
flexion point locus in the surface flow pattern as depicted on figure 4. From 
figures 3 and 4 we observe that the lasgest streamline deflexion due to the sig- 
nificant cross-flow velocity is of the order of 45" a t  E = 12" and up to 60" for 
a = 20". The surface streamlines can be as much as 50" out of phase with their 
free-stream values. The fluid particles closest to the wall undergo their largest 
change of direction near the cross-flow separation line, the location of which is 
shown on figure 5. The experimental observations of Avduevskii & Medvedev 
(1966) and McDevitt & Mellenthin (1969) are also presented. The agreement is 
good and generally within the experimental error.? 

To understand further the flow structure of these complex three-dimensional 

t The spread in the theory reflects variations due to the choice of pressure distribution or 
streamwise location. 
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PIUURES 6(a) and ( b ) .  For legend see following page. 
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180 176 172 168 164 160 156 152 148 144 140 

# o  

FIGURE 6. Projected stream surfaces. iVm = 7.95, 0 = loo, Tw/To = 0-41. ---, sonic line; 
( J 2 + G w 3 ) * / Z =  I . ( a ) R e x =  343x1O5,a = 8 " . ( b ) R e z =  3 . 6 ~  105,cr.= 1 0 " . ( c ) R e z = 2 . 1 x l O 5 ,  
a = 20°. 

boundary layers, the local flow inclinations 0 in the y, $ plane, corresponding to 
streamline projections on the cross-plane, are shown: 

These are illustrated in figures 6 for a = 8, I0 and 20") respectively. I n  the latter 
two cases secondary-flow reversal associated with adverse azimuthal pressure 
gradients occurs near the leeside of the cone. From the figure it is seen that 
vortex sheets originate from the cone surface, a t  the primary separation line, 
then roll up to form a pair of symmetric swirling vortices. These vortex sheets 
are composed of fluid from both the lower surface boundary layer and the outer 
higher velocity edge region of the boundary layer. The mixing process brings the 
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high-energy fluid downward and toward the leeside, while carrying the low- 
energy fluid away from the plane of symmetry. This transfer process leads t o  the 
appearance of a local maximum in the heat transfer a t  Cp = 180". This type of 
vortex-induced, intense localized heating in the vicinity of the leeside has also 
been found experimentally on a space shuttle vehicle and delta wing configura- 
tion (Whitehead & Bertram 1971). When this cross-flow vortex is considered 
with the overall streamwise motion, a pair of symmetric helical vortices can be 
visualized. 

The local sonic line positions, where M = [(U2 + w2)/yBT]4 = 1, are also in- 
dicated in figure 6. The major portion of the vortex is moving at supersonic 
speeds and, as certain experiments have indicated, may explain why there is 
little communication between the boundary layer on a finite length cone and 
its base flow. 

A very interesting result is the appearance of secondary vortices near the 
lee plane in the a = 20" case. From figure 3 ( b )  we can see that at 176" < q5 6 180" 
cross-flow reversal occurs for a second time as the vortex structure becomes more 
complex. The secondary vortices, although quite small, will alter the nature of 
the boundary layer at  the leeward plane. Secondary vortex formation has been 
observed experimentally (e.g. Rainbird 1968). More detailed studies of the flow 
near the lee plane a t  large angles of incidenoe will have to be made before these 
results can be considered conclusive. For the present cone considerations, the 
separation phenomena that occurs is primarily one of cross-flow reversal. It 
should be classified of the free vortex layer type (Maskell 1955). 

Finally, an interesting feature of flow separation on cones at small incidence, 
a < 8") is observed. At these incidence mgles there is neither cross-flow reversal 
nor any appearance of swirling vortices; however, streamlines converge a t  the 
leeward plane, which forms a separation surface dividing the flow emanating 
from the windward attachment plane. From figure 6 ( a )  we see that the flow 
pattern in the y ,  Cp cross-plane is similar to a 'reversed stagnation point' flow; 
here, of course, streamwise convection plays an important role, and alters the 
character of the flow structure, as will be seen in the following discussion. 

In  summary, we find that vortices are initiated in response to an adverse 
azimuthal pressure gradient developing from opposing cross-flows. The vortices 
are maintained entirely within the boundary layer. As the vortex interacts with 
the established boundary layer, high localized heat transfer and the thinning of 
boundary layer at  the symmetry plane results. For favourable azimuthal gradients 
(a < S O ) ,  vortex formation does not occur. 

6.2. Pitot pressure and boundary-layer thickness 

Pitot pressure distributions, within the boundary layer, at a constant height 
above the cone surface are presented in figure 7. When the local Mach number 
is subsonic, an isentropic deceleration is assumed. Agreement between the 
theoretical predictions and Tracy's (1963) experimental results is only fair. At 
a = 4" (not shown) and 8' (figure 7 ( a ) ) ,  a rapid drop in pitot pressure near the 
leeward generator is observed. This would indicate that in the vicinity of the 
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FIGURE 7. Pitot pressure profiles. Mm = 7.95, Z = 3.45 in.; TWITo = 0.41, Rex = 3.6 x lo6. 
-_- , experimental data (Tracy 1963); -, present theory. (a) u = 8", ( b )  20". 

lee plane, the lateral derivative should be quite large, possibly of the same order 
as the normal or derivative, i.e. 

On the other hand, the pitot data near the wall show little variation in the 
azimuthal direction with a = 20" (figure 7 ( b ) ) .  Here the largest variation in 
pitot pressure around the cone occurs in the inviscid flow region. 

Figure 8 (a)  depicts the variation of the symmetry plane boundary-layer thick- 
ness 6 with streamwise distance x. Typical parabolic growth is indicated for all 
angles of incidence on the windward plane. This surface corresponds to an 
attachment line, in that the normal velocity component is always directed toward 
the body. The leeward plane in the same sense corresponds to either an attach- 
ment or separation line. For ale < 0.8, cross-flow separation is not observed, but 
there is an accumulation of low-energy fluid into the leeward generator. There- 
fore, the boundary-layer thickness is largest along this line. Moreover, for angles 
of incidence less than 2", the profiles are 'similar' with respect to the Blasius 
boundary-layer co-ordinate, even with a non-zero cross-flow velocity and stream- 
line convergence into the leeward meridian. Therefore, with a 6 2") on both 
symmetry planes, 6 N xi. 

For 2" < a < So, the leeward plane no longer behaves as a typical Blasius 
boundary layer. I n  these cases, secondary flows are significantly increased. The 
rate of mass accumulation into the lee side is so large that the boundary layer 
has to grow more rapidly to accommodate the influx. Surprisingly, our calculated 
results show that for a = 4", the surface heat transfer C,  still retains an x-* or 
similarity-like dependence; the local boundary-layer thickness is not similar, 
however, but grows more rapidly; i.e. S N x0.* (figure 9).  These results are in 
agreement with all experimental data, and seem to indicate that the viscous- 
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FIGURE 8. Symmetry plane boundary-layor growth. M, = 7.95, TWITo = 041.  ( a )  Stream- 
wise variation. Re = 1.04 x 105in.-l ( b )  Variation with a. Rex = 3.6 x lo5, Z = 345in. a, 
similarity results (Reshotko 1957); 0 (4 = 150"), 0 (130), experimental data (Tracy 
1963); -, present theory. 

dominated region near the body surface still exhibits a similarity type of be- 
haviour, with the outer portion of the boundary layer accommodating the 
incoming mass flux. 

At still larger incidence angles, a z lo", the leeside boundary-layer thickness 
returns to a near similar parabolic form.? Cross-flow separation has occurred, 
and the non-similar region moves away from the leeward meridian to a new 
separation line. 

It is significant that at  angles of attack between 2" and 8", where our solutions 
indicate that the flow is not similar a t  the lee plane, the parameter 

K = 2W,J( 3U, sin O), 
evaluated at the leeward plane, is in the range -0.67 < K < -0.08. This is 
precisely the region where leeward plane similarity solutions have failed to exist 
(Murdock 1971). When a > 8", the boundary layer at  the leeward generator 
returns to a parabolic growth, so that it is possible to obtain meaningful results 
with Moore's (1953) similarity model; indeed, Murdock has obtained solutions 
for - 1-0 < K < - 0.67. This clearly demonstrates that one of the reasons for 
the non-existence of lee plane solutions at certain angles of incidence is due to 
the assumption of parabolic similarity. In  a subsequent discussion, we shall also 
point out the significance of lateral diffusion in the symmetry plane analysis. 

t There is still small but non-zero streamwise variation in the flow properties at and near 
the leeward boundary layer. 

39 F L M  
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The distribution of Sin the q5 direction is shown in figure 10 (a). Good agreement 
is found with Tracy's viscous-layer thickness, except at  the lee plane, where our 
results indicate a larger value of 6 for a = 4" and 8". For a = 4'-So, 6/rw is less 
than 0.1, except near the lee plane, where S/rw E 0-4. Therefore, a second-order 
boundary-layer correction may be important in this region. Figure I0 ( b )  depicts 
the displacement thickness A for a = 8" and 20'. The displacement thickness, 
which has been derived by Moore (1951) and Lighthill (1958), is defined by 

a a 
sinO-[p,u,x(A-S,)] +-[p,w,(A-6&1 = 0, 

ax aq5 

and 

A modified Simpson's rule is used to evaluate the integrals, i.e. 

It is apparent from figure 10 (b)  that 6, closely approximates A, even at a = 20" 
when the cross-flow is definitely not small. 

Our numerical results also indicate that at  a given streamwise location 6 (or A) 
is largest near the cross-flow separation line. With a < 8" this position is located 
a t  the lee side, but gradually moves to q5 = 145" for a = 20". The location of this 
separation line is illustrated in figure 5. For the larger incidence angles a 3 lo", 
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the peak thickness locations off the symmetry plane are associated with two 
symmetric lobes containing the spiral vortices. Rainbird (1 968) combined 
measurements of pitot pressure, surface static pressure and local flow inclination 
to obtain the velocity profiles and therefore 8,. Our numerical results for dis- 
placement thickness are in qualitative agreement with Rainbird's experimental 
data, although his data were obta,ined at a much higher Reynolds number. 

The variation of 6 with angle of attack is depicted in figure 8 ( b ) .  At the wind- 
ward plane, the theoretical prediction almost coincides with the similar results 
of Reshotko (1957); at the leeward plane, the present theory indicates that both 
S and A attain their maximum values at the onset of cross-flow reversal. They 
decrease a t  the Ice side once the secondary-flow separation has been established. 
This type of variation in boundary-layer thickness has also been found by 
Poots (1965) for a three-dimensional compressible boundary layer a t  a point of 
attachment on a general curved surface. 

It should be noted that the boundary-layer thickness near the leeward plane 
can be different from the so-called 'viscous-layer' thickness measured by Tracy 
(1963) and Marcillat (1970). This is due to the fact that the inviscid vortical 
singularity is diffused into a thin vortical layer, which is not a part of the 
boundary layer considered here (see, for example, George 1969; Yahalom 1971; 
Lin 85 Rubin 1972). In  fact, the inner boundary of the vortical layer does not 
necessarily coincide with the outer edge of the boundary layer. Any interaction 
between these two regions has not been considered here. 

6.3. Cross-$ow diffusion, local shear layers and resolutions 

All of the numerical results presented here include the influence of lateral dif- 
fusion (e.g. u4$, etc.). To assess the importance of these effects, calculations have 
been performed with those terms neglected (i.e. 8 = 0 in (2.1)). For a = 2", as 
might be expected at  this relatively small angle of incidence, there is little effect 
on the flow properties (figure ll),  e.g. less than 3 % maximum change in heat 
transfer. However, a t  a = 12"-20") oscillations occur in the heat transfer and 
cross-flow velocity distributions, generally first appearing a t  an azimuthal loca- 
tion where cross-flow separation starts. These numerical wiggles grow as the 
integration proceeds downstream, until either the entire calculation is no longer 
meaningful or the computation becomes unstable. For a = 4"-8", the calcula- 
tions also encounter instability, only this time at the lee plane. The boundary- 
layer thickness increases so rapidly at  the leeward plane that crosswise diffusion 
becomes important as a shear layer forms. 

The importance of choosing a refined grid near the separation line or boundary 
region is demonstrated in figure 9. At a = 4" with A$ < 0.2" near $ = 180") the 
difference in the solutions due to grid size are extremely small and 6 N xO.8; 

however, if A$ = 2" near the leeward plane, 6 N and significantly different 
profiles are found. Also shown is the boundary-layer thickness a t  several other 
locations. The results indicate that the boundary region is of the order 2" a t  
a = 4". 

When the separation line is off the leeward plane, specification of the grid 
becomes somewhat difficult. One can estimate the location of cross-flow separa- 
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FIGURE 11. Heat transfer. Mm = 7.95, TWITo = 0.41. (w) Rex = 4.2 x lo5, a = 2". __ , ex- 
perimental data (Tracy 1963) ; A (lateral diffusion), 0 (no latoral diffusion), present theory. 
(b) Rex = 4.2 x 106, a = 4". A,  experimental data; -, present theory. (c) Rex = 4.2 x lo5, 
u = 8". (d) Rex = 2.1 x lo6, u = 12". 

tion or the so-called 'boundary region ' by trial runs with a coarse grid and sub- 
sequent refinement in the separation region. We have found that with 

FA$ = O(ATj) 

the results are quite acceptable. 
From the windward plane to a location near the cross-flow separation line, 

the flow properties rapidly assume a similarity behaviour in all cases, and it is 
apparent that lateral diffusion is not significant outside the boundary region. 
A much larger grid size is possible for this portion of the flow field, and it is 
evident that once a similarity form has been achieved further integration is 
unnecessary. Therefore, if the boundary-layer solution in this region where 
similarity applies can be predetermined, the numerical calculation for the re- 
mainder of the flow mom a point near the separation line to the leeward plane 
can be made separately. A finer grid can be specified so that adequate resolution 
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FIGURE 12. Heat transfer at large incidence. M, = 7.95, T,,,/T, = 041. Rex = 2.1 x lo6. 
A,  experimental data (Tracy 1963); - , present theory; I, temperature variation of 
1 yo in theory. a: (a )  16"; ( b )  20'. 

in the boundary region is recovered. This procedure is achieved by fixing the 
boundary conditions at  some distance away from the separation line, with the 
predetermined similarity solutions instead of the windward symmetry con- 
ditions. This process can significantly reduce computer time, as well as computer 
storage. The similarity solution can be obtained either from the quasi-two- 
dimensional approach of Cooke (1966), Boericke (1971), Roux (1971), or by con- 
tinuing the numerical marching technique presented herein until similarity is 
achieved. This technique has been extremely useful for obtaining accurate 
calculations of the flow in the boundary regions and near the leeward plane. 

6.4.  Solutions 

(i) Heat transfer. Shown in figures 11 and 12 are the circumferential distribution of 
the heat transfer coefficient C, for several angles of incidence. Here the Stanton 
number has been normalized with its axisymmetric value. The monotonic de- 
crease in C,, from the windward to the leeward generator, for angles of incidence 
a! < So, is typical of attached boundary-layer behaviour for a cone. For a > 8", 
a local minimum appears off the leeward plane. This is apparently due to the 
appearance of the pair of symmetric vortices associated with cross-flow separation. 
It is found that the location of minimum C, does not exactly coincide with the 
secondary-flow separation point nor the position where the local static pressure is 
a minimum; however, the locations of these minimum values do not differ 
significantly. 

Comparisons between the theoretical results and experimental data of Tracy 
(1963) are generally good, except near the leeward plane a t  the largest angle of 
attack, a! = 20'. This variance may be due to the fact that the local C, values 
are quite small in this range, only 10 yo of the axisymmetric value. Therefore, 
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FIGURE 13. Heat transfer at symmetry plane. Rex = 2.1 x lo5. . .7.5 x lo5, 3 = 3.4in. 
0, 0 ,  0, a, experimental data (Tracey 1963); -, present theory. 

a 1 yo error in the temperature near the surface could lead to a 50 yo variation in 
the heat-transfer coefficient as determined from a temperature measurement or 
calculation (see figure 12). Unfortunately, Tracy does not discuss the scatter or 
accuracy of his experimental results in this region, presenting only a single data 
curve. Also, our calculated values for the temperature could easily be in error by 
1 yo. A summary of the Stanton number, for various angles of attack, at the 
leeward and windward planes is given in figure 13. C,, at the leeward plane 
initially decreases with increasing angle of attack, falling to a minimum a t  
approximately the incidence angle corresponding to the onset of cross-flow re- 
versal. CEI then begins to increase with further increases in a. A similar variation 
in the heat transfer is also observed by Poots (1965) in his study ofa compressible 
three-dimensional boundary layer at a point of attachment. For the cone, agree- 
ment between the theoretical results and the experimental data a t  the symmetry 
planes is quite good for all angles of incidence. 

In  the streamwise direction the heat transfer exhibits parabolic decay (i.e. 
C, N z-4) a t  the windward side and generally in the region 4 q 90'. This be- 
haviour is typical of the growth of a conventional boundary layer in the absence 
of any streamwise pressure gradient. Two distinct types of distribution are 
observed at  the leeward plane of the cone. For a < So, the heat-transfer coefficient 
decreases as x-9, indicating a similarity behaviour once again. At angles of 
attack DL. > 8", C,, as seen in figure 14, decreases less rapidly than x-4. This trend 
is also apparent in Tracy's experimental data, where the leeward plane heat- 
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transfer coefficient remains almost invariant for a large range of Reynolds number 
at  both a = 12' and 16". Also shown on figure 14 is the theoretical heat-transfer 
distribution on a cone in the merged and strong interaction regions (Lin & Rubin 
1972). Here, C,  tends to decrease with increasing Reynolds number as the cross- 
flow does not exhibit separation near the cone tip, and the vortex mixing process 
has not commenced. 

(ii) Boundary-layer profiles. Typical profiles at  a fixed streamwise location for 
the cross-flow velocities are shown in figure 15. There are significantly different 
characteristic profiles on the windward and leeward planes. On the windward 
side, the boundary layer is comparatively thin and gradients are quite large near 
the wall. On the leeward plane a much thicker layer with smaller surface shear is 
apparent. 

On and near the windward plane, the flow profiles, as a function of streamwise 
distance, exhibit a similarity behaviour (figure 16). On the leeward plane, for 
4' 6 a < loo, the temperature distribution near the wall is still nearly similar, 
but the flow properties in the outer portion of the boundary layer are no longer of 
the similarity form (figure 16). For a 3 lo", the leeward boundary-layer thickness 
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FIGURE 15. Flow profiles: azimuthal variations. M, = 7.95, 
8 = lo", a = 20", TJT, = 0.41, Rex = 2.1 x 105. 

returns to a near 'similarity' growth. These results reinforce our previous dis- 
cussion concerning the failure of the similarity approximation for obtaining 
symmetry plane solutions for intermediate incidence angles. 

(iii) Effects of Mach number and surface temperature. Variations in surface 
tempemture appear to have little effect on the location of the cross-flow separa- 
tion line (Qs ) ,  although the inclination of the surface streamlines (upwash angle) 
increases monotonically with increasing wall temperature. 

On the other hand, the distribution of azimuthal pressure gradient is sig- 
nificantly influenced by changes in the Mach number. For example, with $1, = 2, 
a = 8", 0 = lo", the position of minimum local pressure, i.e. the position where 
the adverse p+ is initiated, is a t  Q = 136" (Jones 1968). This location gradually 
moves toward the leeward plane with increasing M,, so that at  M, = 20 it is 
found at Q = 171". Since the location and extent of cross-flow separation are 
primarily determined by the distribution of the adverse azimuthal pressure 
gradient p+, the region of cross-flow as defined by the two swirling vortices is 
reduced when M, is increased. 
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FIGURE 16. Flow profiles: stroamwise variations. M ,  = 7-95, 
0 = 100, CL = 40, p = 0.18, T,/T, = 041. 

Further discussion and results concerning the effects on the flow structure of 
grid size, a,, wall enthalpy, mass injection and centrifugal force (i.e. py + 0) 
are presented in an expanded version of the present paper (Lin 6: Rubin 1972). 

7. Summary 
A predictor-corrector, semi-implicit, finite-difference method has been de- 

veloped to study the supersonic boundary layer on a slender cone at  moderate 
angle of incidence (a /S  < 2). Comparisons have been made with available ex- 
perimental data for heat transfer, pitot pressure, limiting streamline inclination 
and boundary-layer thickness. The agreement is generally good for all cases 
considered. The main conclusions of the analysis and numerical calculations are 
as follows. 

(i) In  a small region enclosing the cross-flow separation line, the boundary 
layer may exhibit a non-similar behaviour, thereby creating a boundary region 
with the lateral derivatives [( l / ~ )  (a/a$)] of the same order as the normal gradients 
(a/%). 
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(ii) A reduced mesh size must be specified to obtain adequate resolution of the 
flow structure inside the boundary region. 

(iii) The cross-flow separation line is located at  the leeward generator when 
a / B  < 0.8, but moves away from the lee plane when cross-flow reversal occurs 
(e.g. with a = 20°, €J = 10' and Mm = 7.95, the separation streamline has moved 

(iv) The failure of Moore's similarity niodel at the leeward plane appears to 
be caused by local increased boundary-layer growth. The flow is no longer 
similar, and lateral diffusion (neglected in all previous symmetry plane analysis) 
must be retained, a t  least locally. Furthermore, non-similar behaviour a t  the 
lee surface has been shown to occur in the same range of the parameter 

- 0-67 < K = +[Ge+/(;EZ,sin8)] < - 0.08 

for which symmetry plane solutions have been unobtainable. When K < - 1, 
solutions a t  the leeward plane exhibit a near similar behaviour ; however, there 
is still small but non-zero streamwise variation in flow properties. 

(v) Two helical vortices associated with cross-flow separation are created by 
an adverse azimuthal pressure gradient developing from opposing cross-flows. 
The vortices are maintained entirely within the boundary layer, and form down- 
stream of the cone tip. The major portion of the vortex is moving at  a supersonic 
speed. 

(vi) Vortex interaction with the boundary layer leads to high localized heat 
trans€er, and thinning of the boundary layer at the symmetry plane. 

(vii) For favourable p4 (i.e. lower angles of incidence) vortex formation and 
separation does not occur. 

(viii) The wall cooling has a significant influence on the surface upwash. The 
hotter the wall, the larger the upwash angle. 

(ix) As the free-stream Mach number increases, the region of cross-flow separa- 
tion, if one exists, decreases. The swirling vortices are also reduced in extent with 
increasing M,. 

to # = #s = 145"). 
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